Electronic, Optical, and Lattice Dynamical Properties of Tetracalcium Trialuminate (Ca4Al6O13)
نویسندگان
چکیده
The electronic, optical, and lattice dynamical properties of tetracalcium trialuminate (Ca₄Al₆O13) with a special sodalite cage structure were calculated based on the density functional theory. Theoretical results show that Ca₄Al₆O13 is ductile and weakly anisotropic. The calculated Young's modulus and Poisson ratio are 34.18 GPa and 0.32, respectively. Ca₄Al₆O13 is an indirect-gap semiconductor with a band gap of 5.41 eV. The top of the valence band derives from O 2p states, and the bottom of conduction band consists of Ca 3d states. Transitions from O 2p, 2s states to empty Ca 4s, 3d and Al 3s, 3p states constitute the major peaks of the imaginary part of the dielectric function. Ca₄Al₆O13 is a good UV absorber for photoelectric devices due to the high absorption coefficient and low reflectivity. The lattice vibration analysis reveals that O atoms contribute to the high-frequency portions of the phonon spectra, while Ca and Al atoms make important contributions to the middle- and low-frequency portions. At the center of the first Brillouin zone, lattice vibrations include the Raman active modes (E, A₁), infrared active mode (T₂), and silentmodes (T₁, A₂). Typical atomic displacement patterns were also investigated to understand the vibration modes more intuitively.
منابع مشابه
Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation
In this paper, a photonic crystal waveguide with point defects and lattice constant perturbations of +5%, -5% are being investigated. Firstly waveguide structures with constant and specific parameters are being studied and photonic band gap diagrams for TE/TM modes are depicted; then pulse propagation in the frequencies available in the band gap are shown. After that, effects of parameters like...
متن کاملCalculation of structural ,electronical and optical properties TiO2 in anatase phase
In this Paper, the structural, electronic and optical properties of TiO2 compound are investigated and calculated.The calculations were performed using the full potential linear augmented plane wave (PP-PW) method within density functional theory (DFT)and using the Wien2k package.Structural properties such as lattice constants, bulk modulus and compressibility of this combination are calculated...
متن کاملتاثیر ناخالصی اکسیژن بر روی خواص الکترونی و اپتیکی کالکوژنیدهای کلسیوم، استرانسیوم و باریوم
Electronic and optical properties of calcium, strontium and barium chalcogenide compounds in NaCl structure are studied using the band structure results obtained through the full potential linearized augmented palne wave method. Different linear relationships are observed between theoretical band gap and 1/a2 (where a is lattice constant) for calcium, strontium and barium chalcogenide compounds...
متن کاملElectronic and Optical Properties of AlN Nanosheet Under Uni-axial Strain
We have investigated the electronic and optical properties of AlN hexagonal nanosheets under different kinds of strains, using the band structure results obtained through the full potential linearized augmented plane wave method within the density functional theory. The results show that 10% uniaxial strain along the zig-zag direction induces an indirect to direct band-gap transition. Th...
متن کاملبررسی ابتدا به ساکن خواص مکانیکی و گرمایی نانولولههای GaN با استفاده از محاسبات فونونی
In this work, we calculated the phonon dispersion of GaNNTs (4,0) and (4,4) by quantum ESPRESSO package using Density Functional Theory (DFT), pseudo potentials, and plane wave self-consistent field (PWscf) method. For the purpose of lattice-dynamical calculation and phononic properties, we used PWscf and Phonon codes. The former produces the self-consistent electronic and all related computati...
متن کامل